“Giant atoms” enable quantum processing and communication in one

Researchers devise an on-off system that allows high-fidelity operations and interconnection between processors.

MIT researchers have introduced a quantum computing architecture thatcan perform low-error quantum computations while also rapidly sharing quantum information between processors. The work represents a key advance toward a complete quantum computing platform.

Previous to this discovery, small-scale quantum processors have successfully performed tasks at a rate exponentially faster than that of classical computers. However, it has been difficult to controllably communicate quantum information between distant parts of a processor. In classical computers, wired interconnects are used to route information back and forth throughout a processor during the course of a computation. In a quantum computer, however, the information itself is quantum mechanical and fragile, requiring fundamentally new strategies to simultaneously process and communicate quantum information on a chip.

“One of the main challenges in scaling quantum computers is to enable quantum bits to interact with each other when they are not co-located,” says William Oliver, an associate professor of electrical engineering and computer science, MIT Lincoln Laboratory fellow, and associate director of the Research Laboratory for Electronics. “For example, nearest-neighbor qubits can easily interact, but how do I make ‘quantum interconnects’ that connect qubits at distant locations?”

To read the full article, click here.

Atomium-EISMD